miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer.

نویسندگان

  • Hailin Tang
  • Peng Liu
  • Lu Yang
  • Xinhua Xie
  • Feng Ye
  • Minqing Wu
  • Xiaoping Liu
  • Bo Chen
  • Lijuan Zhang
  • Xiaoming Xie
چکیده

Breast cancer is a major public health problem all over the world, and the current treatment strategies are not potent enough for some patients, especially those with triple-negative breast cancer (TNBC). Recent studies have demonstrated that microRNAs (miRNA) play vital roles in the development of TNBC. In this study, we found that miR-185 was strongly downregulated in TNBC tissues and cell lines and that its expression levels were associated with lymph node metastasis, clinical stage, overall survival, and relapse-free survival in TNBC. We also found that ectopic expression of miR-185 inhibited TNBC cell proliferation in vitro and in vivo. We further identified that miR-185 directly targeted DNMT1 and E2F6, which resulted in a marked increase in the expression of BRCA1 at the mRNA and protein levels in TNBC. Our data suggest that miR-185 functions as a tumor suppressor in TNBC development. It is a promising prognostic biomarker and potential therapeutic target for TNBC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of BRCA1 Expression between Triple-Negative and Luminal Breast Tumors

Background: Previous studies have suggested that BRCA1 dysregulation has been shown to have a role in triple-negative phenotypic manifestation. However, differences of BRCA1 expression, as a tumor suppressor gene, have rarely been investigated between luminal and triple-negative breast tumors. Therefore, the present study attempted to compare the BRCA1 expression in triple-negative with lu...

متن کامل

MiR-340 Inhibits Triple-Negative Breast Cancer Progression by Reversing EZH2 Mediated miRNAs Dysregulated Expressions

The anti-tumor efficacy of miR-340 has been recently characterized in cancers. However, the underlying mechanisms of miR-340 inhibited cell growth and invasion in triple-negative breast cancer (TNBC) have not been well elucidated. In this study, we found that miR-340 expression was negatively correlated with EZH2 (Enhancer of zeste homolog 2) expression in TNBC tissues and cell lines. Subsequen...

متن کامل

PARP inhibitor increases chemosensitivity by upregulating miR-664b-5p in BRCA1-mutated triple-negative breast cancer

Emerging evidence has shown that adding poly(ADP-ribose) polymerase (PARP) inhibitors to chemotherapy regimens is superior to the control regimens alone in BRCA1-mutated triple-negative breast cancer (TNBC) patients, but their underlying mechanisms have not been fully elucidated. In this study, using miRNA microarray analysis of two BRCA1-mutated TNBC cell lines, we found that miR-664b-5p expre...

متن کامل

MiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration

Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...

متن کامل

MiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC

Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2014